Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents.

نویسندگان

  • T Repka
  • R P Hebbel
چکیده

Sickle erythrocyte (RBC) membranes were previously shown to manifest increased Fenton activity (iron-dependent, peroxide-driven formation of hydroxyl radical [.OH]) compared with normal RBC membranes, but the nature of the catalytic iron was not defined. We now find that sickle membranes exposed to superoxide (.O2-) and hydrogen peroxide (H2O2) have three distinct iron compartments able to act as Fenton catalysts: preexisting free iron, free iron released during oxidant stress, and a component that cannot be chelated with deferoxamine (DF). In a model system, addition of iron compounds to normal ghosts showed that free heme, hemoglobin, Fe/adenosine diphosphate (ADP), and ferritin all catalyze .OH production; concurrent inhibition studies using DF documented that the unchelatable Fenton component is free heme or hemoglobin. During exposure to peroxide only, the iron in sickle membranes was unable to act as a Fenton catalyst without addition of a reducing agent. At physiologic concentrations, both ascorbate and glutathione restored Fenton activity. Lipid peroxidation studies showed that at physiologic levels ascorbate acts primarily as an antioxidant; however, as pharmacologic levels are reached, its pro-oxidant effects predominate. This study elucidates the catalytic ability of the iron compartments in the sickle cell membrane, the importance of which relates to the potential role of .OH in membrane damage. It also illustrates the potential participation of cytoplasmic reducing agents in this process, which may be especially relevant in the context of administration of supraphysiologic doses of ascorbate to sickle cell patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes.

Abnormal deposition of hemichrome on the inner aspect of the sickle red cell membrane promotes premature cell demise. The steps proximate to hemichrome formation in these cells are poorly understood. To test the hypothesis that the pathologic deposits of free ferric iron located on the inner aspect of sickle cell membranes would be redox active and promote oxidation of soluble oxyhemoglobin, we...

متن کامل

Spontaneous oxygen radical generation by sickle erythrocytes.

Since the various membrane abnormalities of sickle erythrocytes might result from excessive accumulation of oxidant damage, we have measured the generation of superoxide, peroxide, and hydroxyl radical by normal and sickle erythrocytes using assays involving reduction of cytochrome c, aminotriazole inhibition of catalase, and methane evolution from dimethyl sulfoxide, respectively. Compared wit...

متن کامل

Nonheme iron in sickle erythrocyte membranes: association with phospholipids and potential role in lipid peroxidation.

Previous studies documented the abnormal association of heme and heme proteins with the sickle RBC membrane. We have now examined RBC ghosts and inside-out membranes (IOM) for the presence of nonheme iron as detected by its formation of a colored complex with ferrozine. Sickle ghosts have 33.8 +/- 18.2 nmol nonheme iron/mg membrane protein, and sickle IOM have 4.3 +/- 3.0 nmol/mg. In contrast, ...

متن کامل

Removal of erythrocyte membrane iron in vivo ameliorates the pathobiology of murine thalassemia.

Abnormal deposits of free iron are found on the cytoplasmic surface of red blood cell (RBC) membranes in beta-thalassemia. To test the hypothesis that this is of importance to RBC pathobiology, we administered the iron chelator deferiprone (L1) intraperitoneally to beta-thalassemic mice for 4 wk and then studied RBC survival and membrane characteristics. L1 therapy decreased membrane free iron ...

متن کامل

Nonrandom Association of Free Iron With Membranes of Sickle and ,8-Thalassemic Erythrocytes

To further define the nature of abnormal iron deposits on the membranes of pathologic red blood cells, we have used sickle cell anemia (HbSS), HbSC, and @-thalassemic erythrocytes (RBCs) to prepare inside-out membranes (IOM) and insoluble membrane aggregates (AGGs) containing coclustered hemichrome and band 3. Study of IOM from HbSC and thalassemic patients showed that amounts of heme iron and,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 78 10  شماره 

صفحات  -

تاریخ انتشار 1991